1 Introduction
By applying yesterday’s idea1 with slight variations, we can derive new expressions for matrices whose elements are related to binomial coefficients.
Let U_n be a square matrix with entries:
u_{i,j} = \binom{j}{i} \tag{1}
U_n is an upper triangular matrix with all diagonal entries equal to 1, and it closely resembles Pascal’s triangle (which I prefer to call Tartaglia’s triangle)2.
2 Example matrix U_{10}
U_{10} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & 1 & 3 & 6 & 10 & 15 & 21 & 28 & 36 & 45 \\ 0 & 0 & 1 & 4 & 10 & 20 & 35 & 56 & 84 & 120 \\ 0 & 0 & 0 & 1 & 5 & 15 & 35 & 70 & 126 & 210 \\ 0 & 0 & 0 & 0 & 1 & 6 & 21 & 56 & 126 & 252 \\ 0 & 0 & 0 & 0 & 0 & 1 & 7 & 28 & 84 & 210 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 8 & 36 & 120 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 9 & 45 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \tag{2}
And, of course:
|U_{n}|=1 \tag{3}
Or in element wise notation:
\det\!\left[ \binom{i}{i} \right]_{i,j=1}^{n} = 1 \tag{4}
If we multiply this matrix by its transpose, we obtain a symmetric matrix with:
|A_{n}| = |U_{n}^{T} * U_{n}| = |U_{n}^{2}|=1 \tag{5}
3 Example matrix A_{10}
A_{10}= \left( \begin{array}{cccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 9 & 14 & 20 & 27 & 35 & 44 & 54 & 65 \\ 3 & 9 & 19 & 34 & 55 & 83 & 119 & 164 & 219 & 285 \\ 4 & 14 & 34 & 69 & 125 & 209 & 329 & 494 & 714 & 1000 \\ 5 & 20 & 55 & 125 & 251 & 461 & 791 & 1286 & 2001 & 3002 \\ 6 & 27 & 83 & 209 & 461 & 923 & 1715 & 3002 & 5004 & 8007 \\ 7 & 35 & 119 & 329 & 791 & 1715 & 3431 & 6434 & 11439 & 19447 \\ 8 & 44 & 164 & 494 & 1286 & 3002 & 6434 & 12869 & 24309 & 43757 \\ 9 & 54 & 219 & 714 & 2001 & 5004 & 11439 & 24309 & 48619 & 92377 \\ 10 & 65 & 285 & 1000 & 3002 & 8007 & 19447 & 43757 & 92377 & 184755 \end{array}\right) \\ \tag{6}
The most remarkable property of this symmetric matrix is that its determinant equals 1, making it a unimodular matrix.
Thus, we have constructed a new matrix with determinant equal to one:
\begin{aligned} a_{i,j} &= \sum_{r=1}^n u_{i,r}^* \cdot u_{r,j} \\ &= \sum_{r=1}^{\min(i,j)} u_{r,i} \cdot u_{r,j} \\ &= \sum_{r=1}^{\min(i,j)} \binom{i}{r} \binom{j}{r} \\ &= -1 + \sum_{r=0}^{\min(i,j)} \binom{i}{r} \binom{j}{r} \\ &= -1 + \sum_{r=0}^{i} \binom{i}{r} \binom{j}{r} \\ &= -1 + \binom{i+j}{i} \\ &= \binom{i+j}{i} - 1 \end{aligned} \tag{7}
Alternatively, in element-wise notation:
\det\!\left[ \binom{i+j}{i} - 1 \right]_{i,j=1}^{n} = 1 \tag{8}
Note: For a proof of the binomial identity used above, see references [3] or [4].
References
Footnotes
This article is a translation and update of the original post entitled BINOMIAL MATRIX (I), published on Tuesday, September 22, 2009, on the blog Psychedelic Geometry [2].↩︎
Portret van Niccolò Tartaglia (1572). Gravure por Philips Galle. under CC0 1.0 Public Domain Dedication, Rijksmuseum y Wikimedia Commons, [1]↩︎